工业4.0的制造前景包括从自动化制造向智能制造概念的转变。工业4.0发展中的一大期望是在小批量生产中满足客户对产品变化的需求,从而不会浪费重新配置组装线等时间。智能制造的实现将通过物联网的概念进行,其中每个参与组件都有其已知的IP地址。在这种情况下,智能制造生产系统不仅要以小批量的生产产品来满足客户的需求,还必须具有更好的预测性维护,产品设计的稳健性和适应性生产等特点。为了使智能机器人工厂能够在工业4.0和物联网的环境中工作,因此机器人将在未来的制造业中承担大部分工作,但是人类工人必须留在工作区域中,担任监督角色或从事未经机器人培训的工作。在机器人工作区域内或附近,人类不断出现,这改变了人们对机器人工作区域的栅栏和禁止方式,需要机器人和人类可以安全地共存和协作。
在这种情况下,机器人与人类共享相同的工作空间,并进行工业活动,例如原材料处理,组装和工业产品转移。传统的方法是使人类在有限的范围内接触机器人,并采用适当的安全控制措施,以防工人进入机器人的工作区而导致机器完全停止,一旦进入,会导致中断和重置程序被激活,延长生产时间。随之出现了新提议的方法,即安全的人机协作(HRC),没有任何围栏。为了实现这一点,需要采用协作式机器人网络物理系统(CPS)实施额外的安全和保护措施,这要求基于人与机器人之间的交互程度,确保安全性,并提高生产率。实际上,协作机器人网络物理系统的设计方法是将安全性和安全性问题进行合并,就像设计同时考虑这两个方面的工业设施,下图是协作型机器人的几种应用类型。
协作机器人网络物理系统是一种智能系统,其中集成了计算和物理系统,以控制和感知现实世界变量的变化状态。这种CPS的成功取决于可靠,安全和可靠的传感器网络和通信技术。CPS平台不断发展其架构,以跨越数字物理鸿沟进行工程设计,并消除了关键技术之间的界限。特别是,其中包括电子,计算,通信,传感,驱动,嵌入式系统和传感器网络等。CPS模型中主要包括三个组成部分,人为成分,物理成分和计算成分。
这三者是集成在一起的三个模块。随着使能技术的发展,这三个组成部分之间的互动越来越多,彼此之间通过不同的技术连接在一起,例如,人体位置跟踪和安全距离参数是机器人CPS中工作人员安全的重要考虑因素。机器人系统是高度自动化的系统,消除了元素之间的边界,通过交互加以彼此连接。有多种基于人的视觉,听觉和触觉的人机交互技术。机器人CPS可以使用视觉系统来检测,跟踪和手势识别人类,也可以使用来自人类的音频信号命令机器人。各类传感器和执行器可以使三者之间产生多种不同的交互方式。
在人机协作中,会在CPS中应用多种传感器,以确保安全性。传统方法是手动提供指导或根据要求降低机器人速度,该类方法多为开环的,其人机协作的水平取决于应用现场的风险评估,而且局限于小型机器人的应用。第种安全方法是指定一个工作区,该工作区被激光扫描仪或接近传感器之类的传感器覆盖。在这种情况下,机器人必须在人员进入工作区域时停下来。该系统是传感器相关的闭环系统,但是几乎没有达到人机协作的操作目的,如下图所示。第三种方法是通过基于视觉的系统或其他可能的技术进行速度或距离监视。如果工人进入危险区域,机器人可能会减速甚至停机,其中使用了多种集成传感器和传感器融合技术,极有可能达到较高的人机协作水平,但是如果监视功能失败,则也会带来一定的风险。*后一种方法是通过使用力传感器进行力监控。机器人的速度和加速度的降低将根据允许撞击工人身体部位的力的大小来进行。力大小会因身体不同部位而异。该方案提供了*高水平的人机协作程度,但是还要求集成多种类型的传感器,融合传感器,并在监视功能失败的情况下对风险评估提出挑战。