说明:
车用传感器的种类非常多,而车用气体传感器是其中最重要的组成部分。据不完全统计,汽车发动机所用的传感器中,气体传感器数量占比超过50%,大种类达到5-6个。保守估计,我国每年需要超过2亿个氧传感器、1000万个氮氧传感器、500万个颗粒物传感器。在汽车智能化、自动化的势头下,车用气体传感器正处于飞速发展的风口。车用气体传感器是汽车尾气处理系统中的关键零部件,作为汽车电子控制系统的信息来源,它决定着汽车排放物的控制水平,在降低排放污染、提高能源使用率等方面有着重要作用。从外部环境来看,汽车尾气中含有氮氧化物(NOX)颗粒物(PM)、碳氢化合物(HC)等不同物质,因此需要不同的传感器对其进行检测,以提高汽车燃油的燃烧效率和能源转化率,减少污染性气体排放。目前在汽车上使用的气体传感器主要有氮氧化物传感器、氨气传感器和颗粒物传感器等。从内部环境看,车内空气质量成为消费者买车时的重要考虑因素之一。早在2011年,国家环保部和国家质量监督检验检疫总局联合发布了《乘用车内空气质量评价指南》(GB/T 27630-2011),自2012年3月1日正式实施。车内的TVOC、甲苯、二甲苯、乙苯、苯乙烯、甲醛等有害气体,都可以通过相应的气体传感器来进行检测。新能源汽车前有广阔的市场前景,后有国家政策的大力支持,是未来汽车工业可持续化发展的重要方向。氢能和燃料电池技术是全球汽车与能源产业转型升级的重要突破口。从安全角度看,针对新能源汽车的燃气检测、氢气检测和电池泄漏检测,都需要传感器的助益。在我国实行机动车国六排放标准的背景下,国内汽车工业对于汽车节能减排的要求日趋严格。作为汽车节能减排的关键零部件,除了广阔的市场,对气体传感器的技术指标、成本控制提出了更高、更具体的要求。车规级可靠性,要求传感器在极端环境(高低温度、湿度、振动、电负荷、EMC等)下能够可靠运行。传感器的灵敏度、响应速度、重复性、测...
说明:
江苏省某化工厂合成车间管道突然破裂,随即氢气大量泄漏。厂领导立即命令操作工关闭主阀、附阀,全厂紧急停车。大约5分钟后,正当有关人员紧张讨论如何处理事故时,合成车间突然发生爆炸,在面积约千余平方米的爆炸中心区,合成车间近10m高的厂房被炸成一片废墟,附近厂房数百扇窗户上的玻璃全部震碎,爆炸致使合成车间当场死亡3人,另有2人因伤势过重抢救无效死亡,26人受伤。在这起事故中,管道破裂大量氢气泄漏后,已经具备了爆炸的客观条件。根据爆炸理论,可燃气体在空气中燃爆必须具备以下条件:一是可燃气体与空气形成的混合物浓度达到爆炸极限,形成爆炸性混合气。管道破裂后,氢气大量泄漏,立即形成易燃易爆混合气体,并迅速扩散。氢气在空气中爆炸极限是4%~75%,其浓度达到18.3%~59%就会发生爆轰。二是有能够点燃爆炸性混合气的点火源。当氢气从管道大量泄漏喷出时,氢气和管道破裂部位急剧摩擦,产生高静电压。当静电荷积聚到一定量时,就会击穿空气介质对接地体放电,产生静电火花,从而引起爆炸。这起事故的发生,主要在于设备、设施的安全管理存在缺陷,未能及时发现管道隐藏的事故隐患,也未能及时维护更换。在防范措施上要做到:1、切实加强设备的安全管理,对容易造成腐蚀、破损的管道、阀门等,要定期进行技术分析和系统检漏,并利用设备周期大检修之际彻底检修。2、在工厂防火防爆区内严禁明火,进入该区域人员应穿防静电服或纯棉工作服;在该区域内严禁使用手机等通信设备;防火防爆区内电气设施包括照明灯具、开关应为防爆型,电线绝缘良好、接头牢靠;防火防爆区内严禁存在暴露的热物体。3、加强相关安全技术知识的培训,提高职工对有关设备危险性的认识,建立健全各项规章制度,认真贯彻执行有关安全规程。4、制定应急预案,加强应急预案的演练,提高企业管理人员处理紧急情况的能力。在这起事故中,如果能及时撤出生产人员,就会减少人员伤亡。为了更好的降低此类安...
说明:
雀儿山是由川入藏的生命线——国道317线的必经之地。雀儿山隧道工程位于甘孜州至德格岗托之间,是翻越雀儿山的关键性工程,这也是世界上首条建在海拔4300米以上的超特长公路隧道。工程包括隧道和引道两大部分,隧道长7公里,为双向两车道,总投资11.5亿元,可满足每日最大车流量5000辆汽车通行的需要。长期以来,雀儿山是这条生命线的“瓶颈”,按照正常车速,翻过雀儿山需要1个多小时。在冬季,路面结冰后,翻山时间会长达近3小时,一旦实施交通管制,这条生命线就会彻底中断。 11月10日,这一现状得到了改变。经过10余年科研攻关和5年艰苦建设,全长7079米的雀儿山隧道正式全线贯通,若建设顺利,在2017年年底就可以通车,长久以来的交通“瓶颈”将彻底消除,为德格等贫困县打通经济大动脉。雀儿山隧道的意义不言而喻。不过海拔高,年平均气温零下18摄氏度的地方,想要顺利施工,首先需要解决的就是供氧。因为氧气一旦稀薄,别说人干活不利索,就连机器可能都“转不动”。 “隧道内的含氧量估计只有成都平原的一半左右。”参与隧道科研攻关的西南院相关负责人说,早在2004年,西南院就开始了“高海拔低温、低气压和低氧条件下特长隧道施工技术研究”重大课题的研究。缺氧的难题,咋个解决?为此,施工单位专门在洞外自建了一个氧气站,通过一条巨大的管道,可以源源不断地向隧道内输送氧气。虽然如此,实际操作中远远没有这么简单。今年8月,课题组成员再次到雀儿山去调研勘探,当时的情景令西南院的技术人员张博至今记忆深刻。他说,雀儿山道路盘旋曲折,开着车要打起十二分精神,虽然窗外的风景很美,但随着海拔的逐渐抬升,欣赏美景的雀跃之情逐渐被呼吸困难、胸闷等不适替代。“我们只是在山上都有这种感觉,隧道里更加糟糕。”张博说,隧道里的氧气问题虽然解决了,但新来的员工,还是需要适应高原施工,隔几个小时就要到洞口外的医务室吸氧。事实上,为了加快施工,有...
说明:
在排放监测和检测中气体传感器的应用举例众所周知,发电要烧煤和天然气,取暖要烧煤和天然气,很多工业生产都需要烧煤、人工煤气或天然气,还有的工厂需要烧油作为能源。随着我国对环保的越来越重视,烟气排放监测和检测这块市场正在快速增长。 冷不丁一看,监测和检测不是一回事吗?这两个词真的不是一回事。 今天就专门讲一下烟气监测。 烟气连续监测,英文简称CEMS,是对所有固定污染源排放气体的监督。固定污染源,在这里指的是燃煤电厂、燃气电厂、砖窑、陶瓷窑、加热炉、回火炉、均热 炉、垃圾焚烧厂、煤气厂、化工尾气、焦炉、高炉、转炉、锅炉等,一切大型的烧化石燃料的炉子。固定污染源这个词和移动污染源是相对的,简单的说,固定污染 源就是大炉子,移动污染源就是车船。 以《火电厂大气污染物排放标准》GB13223-2003为例,CEMS设备需要监测的污染物包括:二氧化硫SO2、氮氧化物(以NO2计)、烟尘、汞及其化合物。这里我们只对SO2和NO2作简单介绍。这两种气体污染物存在于煤炭和石油中,在燃烧过程中产生,是酸雨和雾霾的罪魁祸首,因此需要严格监控。如果烟气中的SO2和NO2排放超过100mg/m^3即为不达标,需要安装脱硫和脱硝(即脱氮氧化物)的设备。 现在国家环保局所认可的,分析SO2的方法有非色散红外吸收法(即NDIR)、碘量法和定电位电解法。分析NO2的方法是紫外分光光度法和盐酸萘乙二胺分光光...
说明:
第六届国际氢能与燃料电池汽车大会( FCVC 2021 )于2021年6月8-10日在上海汽车会展中心举办。国际能源转型一直沿着从高碳到低碳、从低密度到高密度的路径进行,而被誉为“21 世纪能源”的氢气是目前公认的最为理想的能量载体和清洁能源提供者。氢能是一种清洁、高效、安全、可持续的二次能源,可通过多种途径获取。且符合我国碳减排大战略。同时有利于解决我国能源安全问题,是我国能源革命的重要媒介。国务院发展研究中心资源与环境政策研究所副所长李佐军在此前接受专访时表示,为了如期实现破达峰、碳中和等目标,我国有必要将加快发展氢能产业作为重要途径。应对全球气候变化必须推进低碳发展,推进低碳发展的重点是实现能源结构转型,而氢能正好是零污染的清洁能源。加快发展氢能产业,将有利于促进关键核心技术开发,推动能源低破转型,促进经济社会绿色转型发展.为实现我国'二氧化破排放力争于2030年前达到峰值.努力争取2060年前实现破中和目标作出突出贡献。本次大会云集了众多内业专家及嘉宾,其中,同济大学章桐教授也应邀参加了本次大会,并主持了《基于应用场景需求的燃料电池解决方案及中重型车技术发展路径》的分论坛。据悉,章桐教授是德国舍弗勒集团全球监事会成员,同济大学教授与学术委员会委员, 同济大学燃料电池汽车技术研究所所长,浙江清华长三角研究院氢燃料电池汽车技术研究中心主任。同时,也是德燃动力创始人, 德燃动力与同济大学合作建立了德燃同济联合实验室,是国内具有正向开发能力的领军企业;国内唯一具备自主完整关键部件支撑的系统产品企业公司;拥有国内最为的燃料电池系统测试能力;全国首台正向开发高性能燃料电池观光车研发企业;已经完成氢燃料动力系统最全车型系列应用,并实现批量供应。是国内最早进行氢燃料电池研发,技术指标国内领先,并填补多项国内空白,实现了进口替代,也是国内首屈一指的氢燃料动力研发团队,更是全球...