说明:
传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 传感器狭义的定义为:能把外界非电信息转换成电信号输出的器件或装置。传感器的广义定义:“凡是利用一定的物质(物理、化学、生物)法则、定理、定律、效应等进行能量转换与信息转换,并且输出与输入严格一一对应的器件或装置均可称为传感器”。 信息化的21世纪,离开不了传感器,传感器的应用领域非常的广泛,电子计算机、生产自动化、现代信息、军事、交通、化学、环保、能源、海洋开发、遥感、宇航等等。下面对一些常用的传感器做简单的介绍。1.传感器与环境保护 目前,地球的大气污染、水质污浊及噪声已严重地破坏了地球的生态平衡和我们赖以生存的环境,这一现状已引起了世界各国的重视。为保护环境,利用传感器制成的各种环境监测仪器正在发挥着积极的作用。 中国现在的环境受到了极大的污染,主要是工业的发展造成了严重的污染。长江、黄河等水域都有不同程度的污染;空气现在的空气也不新鲜,特别是在有工业的地方,比如说PM2.5等超标;这些都是通过传感器检测出来的。2.传感器在机器人上的应用 目前,在劳动强度大或危险作业的场所,已逐步使用机器人取代人的工作。一些高速度、高精度的工作,由机器人来承担也是非常合适的。但这些机器人多数是用来进行加工、组装、检验等工作,屑于生产用的自动机械式的单能机器人。在这些机器人身上仅采用了检测臂的位置和角度的传感器。 要使机器人和人的功能更为接近,...
说明:
雀儿山是由川入藏的生命线——国道317线的必经之地。雀儿山隧道工程位于甘孜州至德格岗托之间,是翻越雀儿山的关键性工程,这也是世界上首条建在海拔4300米以上的超特长公路隧道。工程包括隧道和引道两大部分,隧道长7公里,为双向两车道,总投资11.5亿元,可满足每日*大车流量5000辆汽车通行的需要。长期以来,雀儿山是这条生命线的“瓶颈”,按照正常车速,翻过雀儿山需要1个多小时。在冬季,路面结冰后,翻山时间会长达近3小时,一旦实施交通管制,这条生命线就会彻底中断。 11月10日,这一现状得到了改变。经过10余年科研攻关和5年艰苦建设,全长7079米的雀儿山隧道正式全线贯通,若建设顺利,在2017年年底就可以通车,长久以来的交通“瓶颈”将彻底消除,为德格等贫困县打通经济大动脉。雀儿山隧道的意义不言而喻。不过海拔高,年平均气温零下18摄氏度的地方,想要顺利施工,首先需要解决的就是供氧。因为氧气一旦稀薄,别说人干活不利索,就连机器可能都“转不动”。 “隧道内的含氧量估计只有成都平原的一半左右。”参与隧道科研攻关的西南院相关负责人说,早在2004年,西南院就开始了“高海拔低温、低气压和低氧条件下特长隧道施工技术研究”重大课题的研究。缺氧的难题,咋个解决?为此,施工单位专门在洞外自建了一个氧气站,通过一条巨大的管道,可以源源不断地向隧道内输送氧气。虽然如此,实际操作中远远没有这么简单。今年8月,课题组成员再次到雀儿山去调研勘探,当时的情景令西南院的技术人员张博至今记忆深刻。他说,雀儿山道路盘旋曲折,开着车要打起十二分精神,虽然窗外的风景很美,但随着海拔的逐渐抬升,欣赏美景的雀跃之情逐渐被呼吸困难、胸闷等不适替代。“我们只是在山上都有这种感觉,隧道里更加糟糕。”张博说,隧道里的氧气问题虽然解决了,但新来的员工,还是需要适应高原施工,隔几个小时就要到洞口外的医务室吸氧。事实上,为了加快施工,有...
说明:
随着石油化学工业的发展,易燃、易爆、有毒气体的种类和应用范围都得到了增加。这些气体在生产、运输、使用过程中一旦发生泄漏,将会引发中毒、火灾甚至爆炸事故,严重危害人民的生命和财产安全。由于气体本身存在的扩散性,发生泄漏之后,在外部风力和内部浓度梯度的作用下,气体会沿地表面扩散,在事故现场形成燃烧爆炸或毒害危险区,扩大危害区域。例如,1995年7月,四川省成都市化工总厂液氯车间发生氯气泄漏,当场造成3人死亡,6人受伤,仅约一小时左右,市区范围数十平方公里范围内都能闻到刺激性的氯气味。因此,这类事故具有突发性强、扩散迅速、救援难度大、危害范围广等特点。一旦发生气体泄漏事故,必须尽快采取相应措施进行处置,才能将事故损失降低到*低水平。及时可靠地探测空气中某些气体的含量,及时采取有效措施进行补救,采取正确的处置方法,减少泄漏引发的事故,是避免造成重大财产和人员伤亡的必要条件。这就对气体的检测和监测设备提出了较高的要求。作为一种重要的气体探测器,气体传感器近年来得到了很大的发展。气体传感器的发展使得其应用越来越广泛。本文介绍气体传感器的发展情况及其在气体泄漏事故处置中的应用。2. 气体传感器概述国外从30年代开始研究开发气体传感器。过去气体传感器主要用于煤气、液化石油气、天然气及矿井中的瓦斯气体的检测与报警,目前需要检测的气体种类由原来的还原性气体(H2,C4H10,CH4)等扩展到毒性气体(CO,NO2,H2S,NO,NH3,PH3)等。气体传感器种类繁多。按所用气敏材料及气敏特性不同,可分为半导体式、固体电解质式、电化学式、接触燃烧式、高分子式等。2.1 半导体气体传感器这种传感器主要使用半导体气敏材料。自从1962年半导体金属氧化物气体传感器问世以来,由于具有灵敏度高、响应快等优点,得到了广泛的应用,目前已成为世界上产量*大、使用*广的传感器之一。按照检测气敏特征量方式不同分为电...
说明:
有毒气体报警器可广泛应用于石油、燃气、化工、油库等存在有毒气体的石油化工行业,用以检测室内外危险场所的泄漏情况,是保证生产和人身安全的重要仪器,仪器采用工业级高可靠性的电化学或红外传感器,使其具有高稳定性和无需维护的特点,体现了高技术发展水平。接下来为大家简单介绍以下关于氯气对于人体的危害:氯气常温常压下为黄绿色,有强烈刺激性气味的剧毒气体,密度比空气大,可溶于水,易压缩,可液化为黄绿色的油状液氯,是氯碱工业的主要产品之一,可用作为强氧化剂。氯气中混和体积分数为5%以上的氢气时遇强光可能会有爆炸的危险。氯气具有毒性,主要通过呼吸道侵入人体并溶解在黏膜所含的水分里,会对上呼吸道黏膜造成损害。氯气能与有机物进行取代反应和加成反应生成多种氯化物。氯气能与有机物和无机物进行取代反应和加成反应生成多种氯化物。氯气在早期作为造纸、纺织工业的漂白剂。氯气吸入后与粘膜和呼吸道的水作用形成氯化氢和新生态氧。氯化氢可使上呼吸道粘膜炎性水肿、充血和坏死; 新生态氧对组织具有强烈的氧化作用,并可形成具细胞原浆毒作用的臭氧。氯浓度过高或接触时间较久,常可致深部呼吸道病变,使细支气管及肺泡受损,发生肺炎及中毒性肺水肿。由于刺激作用使局部平滑肌痉挛而加剧通气障碍,加重缺氧状态; 高浓度氯吸入后,还可刺激迷走神经引起反射性的心跳停止。氯气中毒不可以进行人工呼吸。 急性中毒主要为呼吸系统损害的表现。1、起病及病情变化一般均较迅速。2、可发生咽喉炎肺炎或肺水肿,表现为咽痛、呛咳、咳少量痰、气急、胸闷或咳粉红色泡沫痰、呼吸困难等症状,肺部可无明显阳性体征或有干、湿性罗音。有时伴有恶心、呕吐等症状。3、重症者尚可出现急性呼吸窘迫综合征,有进行性呼吸频速和窘迫、心动过速,顽固性低氧血症,用一般氧疗无效。4、少数患者有**样发作,出现喘息,肺部有**音。5、极高浓度时可引起声门痉挛或水肿、支气管痉挛或反射性...
说明:
核心提示:在智能家居市场,越来越多的智能家居在设计中开始采用传感器,以实现先进的传感和控制其中传感器网络通过嵌入式系统对信息进行处理和随机自组织无线通信网络,综合优化了分布式信息处理技术、传感器技术、现代网络及无线通信技术、嵌入式计算技术等,以多跳中继方式将所感知信息传送到用户终端。智能家居也称为智能住宅,国外称之为“Smart Home”是以住宅为载体,在居住环境中安装智能家居系统并融合自动控制技术、计算机技术、物联网技术,通过综合布线、网络通信、安全防范、自动控制技和音视频等技术将家居生活有关的设备智能的联系起来集中管理,提供更具有便捷性、舒适性、安全性、节能性的家庭生活环境。由于现代家庭越来越依赖于智能技术,采用先进传感技术的智能家电技术并使同步通信和控制成为可能。对于智能家居领域人工智能的应用首先要提的应该是亚马逊的Echo智能音箱,谷歌的Google Home家庭设备的控制中心、扎克伯格的“贾维斯”智能管家,微软的“小冰”聊天机器人等,都是国外目前人工智能技术在智能家居领域应用所取得的成果。智能技术是当今许多消费电子设备的一个组成部分。在智能家居市场,越来越多的智能家居在设计中开始采用传感器,以实现先进的传感和控制其中传感器网络通过嵌入式系统对信息进行处理和随机自组织无线通信网络,综合优化了分布式信息处理技术、传感器技术、现代网络及无线通信技术、嵌入式计算技术等,以多跳中继方式将所感知信息传送到用户终端。能够通过各类集成化的微型传感器协作地实时监测、感知和采集各种环境或监测对象的信息。家庭信息化依靠物联网的发展在于机器之间的协作来实现,传感器就是其心脏所在。智能家居在自动化流程的领域中,流程控管、流程安全、作业管理与资产利用等系统,皆需要使用传感器来测量、分析与控制系统设置。家庭中家用电器也涉及位置传感器、接近传感器、液位传感器、流量和速度控制传感器技术被用于其中...